Efficacy of different fungicides for the control of early blight

B. HEREMANS, L DE LANGE, J. CARRETTE AND G. HAESAERT

University College Ghent, Faculty of Biosciences and landscape Architecture, Voskenlaan 270, 9000 Ghent, Belgium
Introduction

Early blight caused by two species of the genus {\textit{Alternaria}} occurs commonly worldwide on potato crops and other Solanaceae. \textit{A. solani} and \textit{A. mali} are destructive pathogens, particularly in regions with high temperature and alternating dry and high humidity periods. Early blight results in premature dying of foliage and yield losses. Early blight was normally controlled by fungicide treatments against \textit{A. solani} on potato crops, but in the last years the disease gained in importance. This change is due to several reasons: reduction of nitrogen supply to the crop, climatic change, the growing of more susceptible potato varieties and the use of new fungicides against late blight with less efficacy against early blight. In recent years some specific fungicides against early blight were developed.

In this study the efficacy of several fungicides was tested against \textit{A. solani} and \textit{A. mali} in potato crops.

Materials and methods

Isolates of \textit{A. solani} species were collected in Flanders, Belgium at the end of the growing season of 2009. Two \textit{A. solani} species and two of \textit{A. mali} isolates were included in this study, as well as a German isolate for both \textit{A. solani} species.

Isolates of \textit{A. solani} and \textit{A. mali} were maintained on potato dextrose agar (PDA). Plugs of one week old fungal mycelium were inoculated on PDA containing different fungicides in different doses. The tested fungicides are summarized in Table 1. Fungicides were applied at 3 doses; dose recommended for field application and a 10 and 100 times lower dose. Citrinum for assessment was the colony diameter whereby the different fungicide treatments were compared to the control (% growth after 10 days).

Results and Discussion

The tested fungicides showed differences in efficacy in controlling the two \textit{A. solani} species (Fig. 1 and 2). \textit{A. solani} isolates 911 and 167 were more sensitive to the fungicides tested than the German isolate and than the \textit{A. mali} isolates. Azoxystrobin (Amistar) and boscalid plus pyraclostrobin (Terminet) were developed for the control of \textit{A. solani} species in potato, Azoxystrobin (Amistar) and boscalid plus pyraclostrobin (Terminet) completely inhibited the mycelium growth of \textit{A. solani} isolates 911 and 103. Azoxystrobin as a fungicide at a dose of 100 g/kg showed a 92% reduction in mycelium growth of \textit{A. solani} isolates 911 and 103. The treatment efficacy of 60-70% was observed for 50 g/kg. The field dose of boscalid plus pyraclostrobin (Terminet) and azoxystrobin (Amistar) on the German isolates of \textit{A. solani} for azoxystrobin (Amistar) a mean inhibition of 32% was observed for the test p.g./kg isolates. Boscalid plus pyraclostrobin (Terminet) completely controlled the growth of the tested \textit{A. solani} isolates.

The other fungicides tested for fungicides used to control late blight in potato. These fungicides controlled very well \textit{A. mali}. Only the treatment where the field dose was reduced 100 times was less efficient on the German isolate: the efficacy fluctuated between 16 and 74 with a mean efficacy of 61%. The field dose of these fungicides completely inhibited the growth of the \textit{A. mali} isolates tested. The Belgian isolates were less sensitive to the lowest doses of these fungicides than the German isolates. The efficacy of the 10 times lower dose fluctuated between 32 and 80%. The efficacy of the 100 times lower dose fluctuated between 27 and 58%.

Conclusion

Fungicides may be less efficient on different isolates in an \textit{A. solani} population and \textit{A. mali} isolates may develop resistance to some azoxystrobin.

Acknowledgments

We would like to thank Dr. J. Landenburger (Landesanstalt für Landwirtschaft, Institut für Phytopathologie und Phytosanitätsdienst, Am Gemark 8, 85764 Freising-Wiesingdonk, Germany) for providing two \textit{A. solani} isolates from Germany.

![Figure 1](image1.png)
Figure 1: Influence of the different fungicides on mycelial growth of \textit{A. solani} isolate 911.

![Figure 2](image2.png)
Figure 2: Influence of the different fungicides on mycelial growth of \textit{A. solani} isolate 167.