Mileos® - the French Potato Late Blight DSS: continuous improvement over the past decade!

D. GAUCHER¹, L. DUBOIS² AND C. CHATOT³

¹ ARVALIS-Institut du végétal, Experimental Station, F-91720 BOIGNEVILLE
d.gaucher@arvalisinstitutduvegetal.fr
² SRAL Nord-Pas de Calais, 175 rue Gustave Delory, F-59000 LILLE ludovic.dubois@agriculture.gouv.fr
³ GERMICOPA R&D, Kerguivarc'h, F-29520 CHATEAUNEUF du FAOU catherine.chatot@germicopa.fr
Mileos® - the French Potato Late Blight DSS: continuous improvement over the past decade!

D. GAUCHER (1), L. DUBOIS (2) et C. CHATOT (3)

ARVALIS-Institut du vegetal. Experimental Station, F-21720 BOIGNEVILLE. d.gaucier@arvalis-institut-du-vegetal.fr
SIRAL, Nord-Pas de Calais, 175 rue Gustave Defley, F-59000 LILLE. ludois.dubois@sirelab.com
GERMICPA R&D. Kerguelen, F-29620 CHATEAUNEUF-du-FAOU. catherine.chatot@germipaca.fr

Mileos® is a web-based, on-farm DSS available to potato growers to control potato late blight (LB), in France. It results from a collaboration between ARVALIS and the Ministry of Agriculture (SIRAL, Nord-Pas de Calais). The 2 existing DSS’s (MLPV and Mili-LIS) have been fused, in 2009, into an optimized tool, entirely reviewed and up-taught in order to better meet national demand and help farmers to comply with EU regulations.

With Mileos® (see www.mileos.fr), the fungicide application on potato crops is optimized, triggered according to a real-time LB risk assessment taking into account environmental data (climatic and disease pressure), agronomic data such as cultivar’s LB resistance and crop health practices for the potato field as chemical input and irrigation.

Mileos® - new version- is an amalgamated model initially based on the epidemiological model Gumbel-Divoux then implemented for hourly quantitative assessment of contamination index through the model Mileos by calculating the number of live spores available on the crop foliage. More recently, the fused model was revised and set up as 4 different compartments (Figure 1) strictly simulating the different steps of a LB epidemiological cycle, from contamination to dispersal as well as the overlapping successive cycles. Required input variables are hourly temperature, relative humidity and rainfall. Additional environmental data (crop growth rate, cultivar’s disease pressure, irrigation) are daily updated & contribute to the set up of action thresholds: treat or not, and what to treat with (Figure 2).

The most significant improvements ...

☑ for the core models
- Genetic evolution (virulence & chem-resistance) of LB populations (Corbière, pers commun)
- Better quantification of primary inoculum sources (in progress; Tobly et al, 2012)
- Effect of low temperatures (5-8°C) on the germination of the spores taking into account
- Incubation length better calibrated according to temperature,
- More accurate value for “produced spores” for successive LB cycles
- Integration of cultivar resistance to LB (updated European Catalog)
- Integration of weather forecast + 3 days

☑ for the circulation of Information
- Thorough Redesign of the IT
- for an optimised transfer of the information:
 - 4 servers: 2 for computing, 1 for the database and 1 as web-server
 - Met stations: most potato producing areas have a dense network of met stations, possibility of sharing and exchanging data
 - Easy download loading of output data as Excel spread sheet (eg. summary of all treatments, met data)
 - LB Risk Alert transmitted on new IT equipments: mobile, smart-phone etc.

Mileos®: a tool to follow up LB epidemics

For a better understanding of environmental impact on LB epidemics, Mileos® is a very useful tool for comparing data (x=cumulated fLg/No of spores) over years and per site (Figure 3). The same data analysis can be performed to characterize LB epidemics in different sites in a given year.

Some Figures for 2012

In 2012, the total amount of connections ...
- for extension and technical teams, was ... 21
- for individual potato growers, ... 410

1300 different plots (field x cultivar x met station) were supervised, equivalent to 20,000 ha, and representing all types of potato crops: early, fresh/cure, processing, starch and seeds; in most of the potato growing Regions. Nord-Pas de Calais, Picardy, Brittany, Beauce, Alsace and Champagne.

The tool has also been recently experimented in Tunisia and Canada.

Mileos® is a sustainable tool for a sustainable control of potato LB. It has demonstrated its robustness and, as a DSS, is constantly tested, updated and adjusted according to the evolution of the biological environment as LB population genetic evolution (sexual reproduction, virulence or resistance to chemicals) or erosion of cultivar behavior to LB as well as according cultural practices or climate change. For these reasons, this device is in full agreement with the EU Directives 2000/60/EC and in line with the National French Ecophyto Plan Axe 2.

14th EuroBlight workshop – Limassol (Cyprus) 12-15 May 2013